
Agilent 8565EC Specs Provided by www.AAATesters.com

Agilent 8560 EC Series Spectrum Analyzers Data Sheet

Agilent 8560EC 30 Hz to 2.9 GHz Agilent 8561EC 30 Hz to 6.5 GHz ¹ Agilent 8562EC 30 Hz to 13.2 GHz Agilent 8563EC 30 Hz to 26.5 GHz Agilent 8564EC 30 Hz to 40 GHz Agilent 8565EC 30 Hz to 50 GHz

1. The 8561EC has been discontinued and replaced with 8562EC.

The Agilent 8560 EC Series spectrum analyzers have a color display, offer standard digitized fast time domain sweeps (Option 856xE-007 on the 8560 E Series), and are Class 3 MIL-rugged. The 8560 EC Series is identical to the 8560E Series in all other respects.

Frequency Specifications, Agilent 8560 EC Series

Unless noted, all specifications describe the instrument's warranted performance under the following conditions: 5-minute warm-up from ambient conditions, autocoupled controls, digital display, IF ADJ ON, REF LVL CAL adjusted, SECOND IF OUTPUT and 1ST LO OUTPUT terminated in 50 Ω . After a 30-minute warm-up, and over a temperature range of 20 °C to 30 °C, the preselector does not have to be peaked at each signal of interest; under these conditions factory preselector peak values are sufficient to meet all specifications. Typical performance is non-warranted. Supplemental characteristics are denoted by "nominal" and "approximately"; these constitute non-warranted functional performance information derived during the design process and are not tested on a continuing basis.

	range	050450	050050	050050	050450	050550
	8560EC	8561EC	8562EC	8563EC	8564EC	8565EC
Internal	30 Hz ² to	30 Hz ² to	30 Hz ² to	30 Hz ¹ to	30 Hz ¹ to	30 Hz ¹ to
mixing	2.9 GHz	6.5 GHz	13.2 GHz	26.5 GHz	40 GHz	50 GHz
External	18 GHz to	18 GHz to	18 GHz to	18 GHz to	18 GHz to	18 GHz to
mixing	325 GHz	325 GHz	325 GHz	325 GHz	325 GHz	325 GHz
Frequency ban		Н	armonic mixing m	ode (N)		
30 Hz to 2.9 GH		1				
2.75 GHz to 6.4		1				
5.86 GHz to 13.2	2 GHz	2				
12.4 GHz to 26.		4				
26.4 GHz to 31.		4				
31.0 GHz to 50	GHz	8				
Frequency i	reference			Option 8	156xEC-103	
Temperature st		+	1 x 10 ⁸	±1x10 ⁻⁶		
Aging (per year	-		1 x 10 ⁻⁷	±2x10 ⁻⁶		
(per day nom			$5 \times 10^{-10} (4)$			
nitial achieval	,		2.2 x 10 ⁻⁸	±1 x 10-	-6	
	rmup accuracy fact		^ 10	±1,7,10		
5 minute			1 x 10 ⁻⁷			
15 minute			1 x 10 ⁻⁸			
Start, stop, cer	readout accurat nter and marker freq	uency functions) ±(freq readou		y ⁶ +5% x span +15		
Span > 2 MHz > Span ≤ 2 MHz >		±(freq readou	it x freq ref accurac	;y⁰ +1% x span +15	/0 X 110 112 /	
Span ≤ 2 MHz >	x N ⁵		it x freq ref accurac	y° +1% x span +15		
Span ≤ 2 MHz > Frequency o	x № counter accura	;y				
Span ≤ 2 MHz > F <i>requency c</i> Marker count a	x № counter accura	с у ±	(marker freq x freq	ref accuracy ⁷ +2 Hz		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB)	x N ⁵ counter accurad cccuracy	;y ± +	(marker freq x freq 1 LSD of counter)	ref accuracy ⁷ +2 Hz		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 G	x N ⁵ counter accurat Iccuracy GHz	CY ± + ±	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w	ref accuracy ⁷ +2 Hz rarm-up) ⁷		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 G	x N ⁵ counter accurad cccuracy	CY ± + ± ± t = 1 Hz) ±	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v	ref accuracy ⁷ +2 Hz rarm-up) ⁷ warm-up) ⁷		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB) Accuracy at 1 G (25 °C, 1 yr agir	x N ⁵ counter accurat iccuracy GHz ng, marker resolution	CY ± + ± t = 1 Hz) ±	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute x 3003 Hz (Option 850	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103)		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 G	x N ⁵ counter accurat iccuracy GHz ng, marker resolution	CY ± + ± ± ± ± ± ±	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103)		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB) Accuracy at 1 G (25 °C, 1 yr agir Delta count acc	x N ⁵ counter accurat iccuracy GHz ng, marker resolution	CY ± + ± ± ± ± ± + + + + + + + + + + + + +	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103)		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB) Accuracy at 1 G (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB)	x N ⁵ counter accurat ccuracy GHz ng, marker resolution curacy	CY ± + ± ± ± ± ± + + + + +	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD)	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB) Accuracy at 1 G (25 °C, 1 yr agir Delta count acc	x N ⁵ counter accurat ccuracy GHz ng, marker resolution curacy	CY ± + ± ± ± ± ± + + + + +	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶		
Span ≤ 2 MHz > Frequency (Marker count a (S/N ≥ 25 dB) Accuracy at 1 C (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB) Counter resolut Frequency s	x N ⁵ Counter accurat Inguracy GHz ng, marker resolution Curacy tion	Cy ± + + ± ± ± ± ± ± + + So	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD) electable from 1 Hz	ref accuracy ⁷ +2 Ha rarm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 G (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB) Counter resolut	x N ⁵ Counter accurat Inguracy GHz ng, marker resolution Curacy tion	Cy ± + + ± = 1 Hz) ± ± ± + + So 0, 100 Hz to fi	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD) electable from 1 Hz	ref accuracy ⁷ +2 Hz varm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶ to 1 MHz		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 C (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB) Counter resolut $Frequency sRange$	x N ⁵ Counter accurat Inguracy GHz ng, marker resolution Curacy tion	Cy ± + + ± = 1 Hz) ± ± ± + + So 0, 100 Hz to fi	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD) electable from 1 Hz	ref accuracy ⁷ +2 Hz varm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶ to 1 MHz		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 C (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB) Counter resolut $Frequency sRangeAccuracy$	x N ⁵ Counter accurat Incuracy GHz ng, marker resolution curacy tion	2y = 1 Hz) = 1 Hz)	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD) electable from 1 Hz	ref accuracy ⁷ +2 Hz varm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶ to 1 MHz		
Span ≤ 2 MHz > Frequency of Marker count a (S/N ≥ 25 dB) Accuracy at 1 C (25 °C, 1 yr agir Delta count acc (S/N ≥ 25 dB) Counter resolut $Frequency sRange$	x N ⁵ Counter accurat Incuracy GHz ng, marker resolution curacy tion span x N ⁵	Cy ± + + ± = 1 Hz) ± ± ± + + So 0, 100 Hz to fi	(marker freq x freq 1 LSD of counter) 225 Hz (5-minute w 135 Hz (15-minute v 3003 Hz (Option 850 (delta freq x freq re 4 Hz x N ⁵ 2 LSD) electable from 1 Hz	ref accuracy ⁷ +2 Hz varm-up) ⁷ warm-up) ⁷ 6xEC-103) f accuracy ⁶ to 1 MHz		

^{1.} Agilent 8563EC, 8564EC, 8565EC require Option 856xEC-006 for operation below 9 kHz.

- 4. After 7 day warm-up
- 5. N = harmonic mixing mode number

^{2.} Agilent 8560EC, 8561EC, 8562EC minimum frequency in AC coupled mode is 100 kHz . In DC coupled mode minimum frequency is 30 Hz.

^{3.} -10 °C to +55 °C, referenced to 25 °C

^{6.} Frequency reference accuracy = aging x time since last adjustment + initial achievable accuracy + temperature stability

^{7.} Short term warmup accuracy factors have been included in this calculation.

Frequency Specifications, continued

Sweep time			
Range			
Span = 0 Hz	50 µs to 6000 s		
Span ±100 Hz	·		
RBW ≥ 300 Hz	50 ms to 2000 s		
RBW ≤ 100 Hz	50 ms to 100 ks		
Accuracy (Span = 0 Hz)			
Sweep time \geq 30 ms	±1% (digitized trace (data)	
Sweep time < 30 ms			
Sweep trigger		gle, line, video, external	
Resolution bandwidth			
Range (–3 dB)	1 Hz to 1 MHz in a 1,	3, 10 sequence and 2 MHz (3 MHz at –6 dB)	
Option 856xEC-103 ¹		, 3, 10 sequence and 2 MHz (3 MHz at –6 dB)	
Accuracy	1 Hz to 300 kHz ±10%		
	1 MHz	±25%	
	2 MHz	+50%, -25%	
Selectivity (–60 dB/–3 dB BW ratio)			
Selectivity (-60 dB/-3 dB BW ratio) RBW \geq 300 Hz	< 15:1		
	< 15:1 < 5:1		
RBW ≥ 300 Hz RBW ≤ 100 Hz			
$RBW \ge 300 \text{ Hz}$ $RBW \le 100 \text{ Hz}$ $Video \text{ bandwidth range} \qquad 1 \text{ Hz to 3 N}$ $\overline{Noise \ sidebands} \text{ (see Figure 1)}$	< 5:1		
RBW ≥ 300 Hz RBW ≤ 100 Hz Video bandwidth range 1 Hz to 3 M Noise sidebands (see Figure 1) Center frequency ≤ 1 GHz	< 5:1		
RBW ≥ 300 Hz RBW ≤ 100 Hz Video bandwidth range 1 Hz to 3 M Noise sidebands (see Figure 1) Center frequency ≤ 1 GHz Offset	< 5:1 /Hz in a 1, 3, 10 sequence	Option 856xEC-103 ¹	
RBW ≥ 300 Hz RBW ≤ 100 Hz Video bandwidth range 1 Hz to 3 M Noise sidebands (see Figure 1) Center frequency ≤ 1 GHz Offset 100 Hz	< 5:1 ⁄IHz in a 1, 3, 10 sequence ≤ −88 dBc/Hz ²	Option 856xEC-103¹ $\leq -70 \text{ dBc/Hz}^2$	
RBW ≥ 300 Hz RBW ≤ 100 Hz Video bandwidth range 1 Hz to 3 M Noise sidebands (see Figure 1) Center frequency ≤ 1 GHz Offset 100 Hz 1 kHz	< 5:1 //Hz in a 1, 3, 10 sequence ≤	Option 856xEC-103¹ ≤ -70 dBc/Hz ² ≤ -90 dBc/Hz ²	
$\label{eq:result} \begin{array}{l} \text{RBW} \geq 300 \text{ Hz} \\ \text{RBW} \leq 100 \text{ Hz} \end{array} & 1 \text{ Hz to 3 N} \\ \hline \textbf{Video bandwidth range} & 1 \text{ Hz to 3 N} \\ \hline \textbf{Noise sidebands} \text{ (see Figure 1)} \\ \hline \textbf{Center frequency} \leq 1 \text{ GHz} \\ \hline \textbf{Offset} \\ 100 \text{ Hz} \\ 1 \text{ kHz} \\ 10 \text{ kHz}^6 \end{array} \end{array}$	< 5:1 <i>I</i> Hz in a 1, 3, 10 sequence	Option 856xEC-103¹ $\leq -70 \text{ dBc/Hz}^2$ $\leq -90 \text{ dBc/Hz}^2$ $\leq -113 \text{ dBc/Hz}^3$	
$\begin{array}{l} \text{RBW} \geq 300 \text{ Hz} \\ \text{RBW} \leq 100 \text{ Hz} \end{array} \\ \hline \textbf{Video bandwidth range} \qquad 1 \text{ Hz to 3 N} \\ \hline \textbf{Noise sidebands} \text{ (see Figure 1)} \\ \hline \textbf{Center frequency} \leq 1 \text{ GHz} \\ \hline \textbf{Offset} \\ 100 \text{ Hz} \\ 1 \text{ kHz} \\ 10 \text{ kHz} \\ 6 \\ 30 \text{ kHz} ^{6} \text{ .8} \end{array}$	< 5:1 <i>I</i> Hz in a 1, 3, 10 sequence <pre></pre>	Option 856xEC-103¹ ≤ -70 dBc/Hz^2 ≤ -90 dBc/Hz^2 ≤ -113 dBc/Hz^3 ≤ -113 dBc/Hz^4	
$\label{eq:result} \begin{array}{l} \text{RBW} \geq 300 \text{ Hz} \\ \text{RBW} \leq 100 \text{ Hz} \end{array} & 1 \text{ Hz to 3 N} \\ \hline \textbf{Video bandwidth range} & 1 \text{ Hz to 3 N} \\ \hline \textbf{Noise sidebands} \text{ (see Figure 1)} \\ \hline \textbf{Center frequency} \leq 1 \text{ GHz} \\ \hline \textbf{Offset} \\ 100 \text{ Hz} \\ 1 \text{ kHz} \\ 10 \text{ kHz}^6 \end{array} \end{array}$	< 5:1 <i>I</i> Hz in a 1, 3, 10 sequence	Option 856xEC-103¹ $\leq -70 \text{ dBc/Hz}^2$ $\leq -90 \text{ dBc/Hz}^2$ $\leq -113 \text{ dBc/Hz}^3$	
$\label{eq:response} \begin{array}{l} \text{RBW} \geq 300 \text{ Hz} \\ \text{RBW} \leq 100 \text{ Hz} \end{array} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	< 5:1 <i>I</i> Hz in a 1, 3, 10 sequence $\leq -88 \ dBc/Hz^2$ $\leq -97 \ dBc/Hz^2$ $\leq -113 \ dBc/Hz^3$ $\leq -113 \ dBc/Hz^4$ $\leq -117 \ dBc/Hz^5$	Option 856xEC-103¹ $\leq -70 \text{ dBc/Hz}^2$ $\leq -90 \text{ dBc/Hz}^2$ $\leq -113 \text{ dBc/Hz}^3$ $\leq -113 \text{ dBc/Hz}^4$ $\leq -117 \text{ dBc/Hz}^5$	
$\begin{array}{l} \text{RBW} \geq 300 \text{ Hz} \\ \text{RBW} \leq 100 \text{ Hz} \end{array} \\ \hline \textbf{Video bandwidth range} \qquad 1 \text{ Hz to 3 N} \\ \hline \textbf{Noise sidebands} \text{ (see Figure 1)} \\ \hline \textbf{Center frequency} \leq 1 \text{ GHz} \\ \hline \textbf{Offset} \\ 100 \text{ Hz} \\ 1 \text{ kHz} \\ 10 \text{ kHz} \\ 6 \text{ 30 kHz} \\ 6 \text{ .8} \\ 100 \text{ kHz} \\ 7 \end{array}$	< 5:1 <i>I</i> Hz in a 1, 3, 10 sequence <pre></pre>	Option 856xEC-103¹ $\leq -70 \text{ dBc/Hz}^2$ $\leq -90 \text{ dBc/Hz}^2$ $\leq -113 \text{ dBc/Hz}^3$ $\leq -113 \text{ dBc/Hz}^4$ $\leq -117 \text{ dBc/Hz}^5$ 20 ms	

^{1.} Option 856xEC-103 is no longer offered.

^{2.} Add 5.2 x ((f/1 GHz)–1) for f > 1 GHz and f \leq 2.9 GHz

^{3.} Add 2.5 x ((f/1 GHz)–1) for f > 1 GHz and f \leq 2.9 GHz

^{4.} Add 3.0 dB x ((f/1 GHz)–1) for f > 1 GHz and $f \le 2.9$ GHz

^{5.} Add 2 dB for f > 1 GHz and f \leq 2.9 GHz

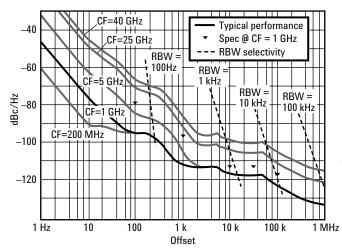
^{6.} RBW \leq 1 kHz or span \leq 745 kHz

^{7.} RBW \geq 3 kHz or span > 745 kHz

^{8.} Not specified at 30 kHz offset for Agilent 8564EC and Agilent 8565EC

^{9.} N = harmonic mixing mode number

Amplitude Specifications, Agilent 8560 EC Series


Range	Displayed average noise level (DANL) to +30 dBm
Maximum safe input lev	el
Average continuous power	+30 dBm (1 W, input attn \geq 10 dB)
Peak pulse power	+50 dBm (100 W, input attn \geq 30 dB)
$(\leq 10 \text{ ms pulse width}, < 1\% \text{ duty})$	/ cycle)
Maximum DC input voltage	
DC coupled ±	0.2 Vdc
AC coupled ±	50 Vdc ¹

Displayed average noise level (DANL) (see Figure 2) (0 dB attenuation, 1 Hz resolution bandwidth²)

	8560EC	8561EC	8562EC	8563EC	8564EC, 8565EC
30 Hz ³	≤ –90 dBm	≤ –90 dBm	≤ –90 dBm	≤ –90 dBm	≤ –90 dBm
1 kHz ³	≤ –105 dBm	≤ –105 dBm	≤ –105 dBm	≤ –105 dBm	≤ –105 dBm
10 kHz	≤ –120 dBm	\leq –120 dBm	\leq –120 dBm	≤ –120 dBm	≤–120 dBm
100 kHz	≤ –120 dBm	≤ –120 dBm	≤ –120 dBm	≤ –120 dBm	≤–120 dBm
1 MHz to 10 MHz	≤ –140 dBm	\leq –140 dBm	≤ –140 dBm	≤ –140 dBm	≤–140 dBm
10 MHz to 2.9 GHz	≤ –151 dBm	≤ –145 dBm	≤ –151 dBm	≤ –149 dBm	≤ –145 dBm
2.9 GHz to 6.46 GHz		≤ –145 dBm	≤ –148 dBm	≤ –148 dBm	≤ <i>—</i> 147dBm
6.46 GHz to 13.2 GHz			≤ –145 dBm	≤ –145 dBm	≤ –143 dBm
13.2 GHz to 22.0 GHz				≤ –140 dBm	\leq -140 dBm
22.0 GHz to 26.84 GHz				≤ –139 dBm	≤ –136 dBm
26.8 GHz to 31.15 GHz					≤ –139 dBm
31.15 GHz to 40 GHz					≤–130 dBm
40 GHz to 50 GHz					≤ –127 dBm

1 dB gain compression

Maximum power at mixer = input power (dBm) - input attenuation (dB)10 MHz to 2.9 GHz-5 dBm2.9 GHz to 6.46 GHz $+0 dBm^5$ 6.46 GHz to 26.8 GHz-3 dBm26.8 GHz to 50 GHz+0 dBm (nominal)



Figure 2. Typical on-screen dynamic range versus offset from 1 GHz center frequency for all RBWs (mixer level = -10 dBm).

Figure 1. Noise sidebands normalized to 1 Hz BW versus offset from carrier.

- 2. For Option 856xEC-103, degrade DANL by 10 dB
- 3. Agilent 8563EC, 8564EC, 8565EC require Option 856xEC-006 for operation below 9 kHz $\,$
- 4. For Agilent 8563EC: 26.5 GHz
- 5. Agilent 8561EC: –3 dBm

Amplitude Specifications, continued

Dynamic range (see F Compression to noise 1	Figure 3)				
•	8560EC	8561EC	8562EC	8563EC	8564EC, 8565EC
10 MHz to 2.9 GHz	> 146 dB	> 140 dB	> 146 dB	> 144 dB	> 145 dB
2.9 GHz to 6.46 GHz		> 142 dB	> 148 dB	> 148 dB	> 147 dB
6.46 GHz to 13.2 GHz			> 142 dB	> 142 dB	> 140 dB
13.2 GHz to 22.0 GHz				> 137 dB	> 137 dB
22.0 GHz to 26.8 GHz				> 136 dB	> 133 dB
26.8 GHz to 31.15 GHz					> 139 dB
31.15 GHz to 40 GHz					> 130 dB
40 GHz to 50 GHz					> 127 dB
Signal to distortion Harmonic ²					
	8560EC	8561EC	8562EC	8563EC	8564EC, 8565EC
20 MHz to 1.45 GHz	> 95 dB	> 88.5 dB	> 95 dB	> 94dB	> 92 dB
1.45 GHz to 2 GHz		> 98.5 dB	> 111.5 dB	> 111.5 dB	> 111 dB
2 GHz to 3.25 GHz		> 119 dB	> 119 dB	> 119 dB	> 113.5 dB
3.25 GHz to 6.6 GHz			> 117.5 dB	> 117.5 dB	> 111.5 dB
6.6 GHz to 11 GHz				> 115 dB	> 110 dB
1 GHz to 13.4 GHz				> 114.5 dB	> 108 dB
3.4 GHz to 15.6 GHz					> 109.5 dB
15.6 GHz to 20 GHz					> 105 dB
20 GHz to 25 GHz					> 103.5 dB
Intermodulation ³					
	8560EC	8561EC	8562EC	8563EC	8564E, 8565EC
0 MHz to 2.9 GHz	> 108 dB	> 103 dB	> 108 dB	> 107 dB	> 104 dB
2.9 GHz to 6.46 GHz		> 107 dB	> 108.5 dB	> 108.5 dB	> 108 dB
6.46 GHz to 13.2 GHz			> 101.5 dB	> 101.5 dB	> 100 dB
3.2 GHz to 22.0 GHz				> 98 dB	> 98 dB
2.0 GHz to 26.8 GHz				> 97.5 dB	> 95.5 dB
6.8 GHz to 31.15 GHz					> 101 dB (nominal)
31.15 GHz to 40 GHz					> 95 dB (nominal)
0 GHz to 50 GHz					> 93 dB (nominal)
e −40	(1 Hz BW)	7			
Third o	rder distortion d harmonic distortion		_		

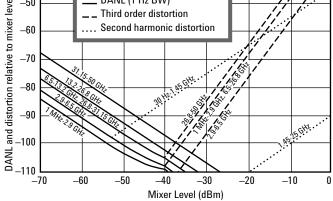


Figure 3. Agilent 8560 EC Series nominal dynamic range

^{1. (1}dB compression - DANL) for Option 856xEC-103, degrade compression to noise dynamic range by 10 dB

^{2. 0.5} x (SHI - DANL at 2 x input frequency) for Option 856xEC-103, degrade harmonic (SHI) dynamic range by 5 dB

^{3. 0.67} x (TOI - DANL) for Option 856xEC-103, degrade intermodulation (TOI) dynamic range by 6.67 dB

Amplitude Specifications, continued Spurious responses

General spurious responses (Mixer level –40 dBm)	< (-75 + 20 x logN) ¹ d	Bc	
Second harmonic distortion			
Input signal	Mixer level	Distortion	SHI
20 MHz to 1.45 GHz	–40 dBm	\leq -79 dBc ²	+39 dBm ²
1.45 GHz to 2 GHz	–10 dBm ³	\leq –85 dBc ³	+75 dBm ³
2 GHz to 13.25 GHz			
8562E, 8563E	–10 dBm	≤ <i>—</i> 100 dBc	+90 dBm
8564E, 8565E	–10 dBm	≤ –90 dBc	+80 dBm
13.25 GHz to 25 GHz	–10 dBm	\leq –90 dBc	+80 dBm
Third order intermodulation distortion			
(Two $-30 \text{ dBm signals}, \ge 1 \text{ kHz apart})$			
	Mixer level	Distortion	τοι
20 MHz to 2.9 GHz	–30 dBm each	\leq -82 dBc ⁴	+11 dBm
2.9 GHz to 6.46 GHz	–30 dBm each	≤ –90 dBc	+15 dBm
	–30 dBm each –30 dBm each	≤ –90 dBc ≤ –75 dBc	+15 dBm +7.5 dBm
6.46 GHz to 26.8 GHz			+7.5 dBm
6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz	–30 dBm each	≤ –75 dBc	+7.5 dBm
6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz Image responses	–30 dBm each –30 dBm each	≤ –75 dBc	+7.5 dBm
2.9 GHz to 6.46 GHz 6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz Image responses 10 MHz to 26.8 GHz 26.8 GHz to 50 GHz	–30 dBm each –30 dBm each Mixer level	\leq -75 dBc \leq -85 dBc (nominal	+7.5 dBm
6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz Image responses 10 MHz to 26.8 GHz	–30 dBm each –30 dBm each Mixer level –10 dBm	≤ -75 dBc ≤ -85 dBc (nominal -80 dBc	+7.5 dBm
6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz Image responses 10 MHz to 26.8 GHz 26.8 GHz to 50 GHz	–30 dBm each –30 dBm each Mixer level –10 dBm	≤ -75 dBc ≤ -85 dBc (nominal -80 dBc	+7.5 dBm
6.46 GHz to 26.8 GHz 26.8 GHz to 50 GHz Image responses 10 MHz to 26.8 GHz 26.8 GHz to 50 GHz	-30 dBm each -30 dBm each Mixer level -10 dBm -30 dBm	≤ -75 dBc ≤ -85 dBc (nominal -80 dBc	+7.5 dBm

Residual responses

 \leq -90 dBm, for the range from 200 kHz to 6.46 GHz, no input signal, 0 dB input attenuation

<i>Display range</i> Viewing area	Color display, approximately 9.6 cm (v) x 13 cm (h) 10 x 10 divisions				
Scale calibration					
Log scale	10, 5, 2, 1 dB per divisio				
Linear scale	10% of reference level	ber division			
Scale fidelity					
	Incremental	Maximum			
Log range	0 to –90 dB	0 to –90 dB			
RBW ≥ 300 Hz	±0.1 dB/dB	±0.85 dB			
RBW ≤ 100 Hz	±0.2 dB/2 dB	±0.85 dB ⁵			
Linear range	±3% of reference level				
Reference level range					
Log, adjustable in 0.1 dB steps					
30 Hz to 31.15 GHz	–120 to +30 dBm				
31.15 GHz to 50 GHz	-115 to +30 dBm				
Linear, adjustable in 1% steps					
30 Hz to 31.15 GHz	2.2 mV to 7.07 V				
31.15 GHz to 50 GHz	3.98 mV to 7.07 V				

1. Excluding display-related sidebands at multiples of 60 Hz

2. Agilent 8561EC: distortion -72 dBc, SHI +32dBm

3. Agilent 8561EC: mixer level -20 dBm, distortion -72 dBc, SHI +52 dBm

4. Agilent 8561EC -78 dB distortion with two -30 dBm signals, 9 dBm TOI

5. Maximum for 0 to -100 dB is $\pm 1.5 \text{ dB}$

Amplitude Specifications, continued

Frequency response in dB, 10 dB input attenuation, dc coupled elative / typical relative / absolute² / typical absolute³

	8560EC	8561EC	8562EC	8563EC	8564EC, 8565EC
100 MHz to 2 GHz	0.7/0.7/–/–		0.9/0.8/-/-	1.0/0.8/_/_	0.9/0.8/-/-
30 Hz 1 to 2.9 GHz	1/0.8/1.5/1.0	1.0/0.7/1.75/1.0	1.25/0.8/1.8/1.0	1.25/0.8/1.8/1.0	1.0/0.8/1.5/1.0
2.9 GHz to 6.46.GHz		1.5/1.1/2.5/1.5	1.5/1.1/2.5/1.5	1.5/1.0/2.4/1.5	1.7/1.4/2.6/1.8
6.46 to 13.2 GHz			2.2/1.5/2.9/2.0	2.2/1.5/2.9/2.0	2.6/2.2/3.0/2.8
13.2 to 22 GHz				2.5/1.5/4.0/2.5	2.5/2.5/4.0/3.5
22 to 26.8 GHz				3.3/2.2/4.0/2.5	3.3/2.2/4.5/4.0
26.8 to 31.15 GHz					3.1/2.9/4.0/3.0
31.15 GHz to 40 GHz (Ag	ilent 8564EC)				2.6/2.4/4.0/3.2
31.15 GHz to 50 GHz (Ag	ilent 8565EC)				3.2/3.0/4.0/4.0

Band switching uncertainty

±1 dB (added to relative frequency response for between-band measurements)

Calibrator output

300 MHz x (1 \pm frequency reference accuracy⁴) at -10 dBm \pm 0.3 dB

Input attenuator

Switching uncertainty (referenced to 10 dB attenuation) 30 Hz to 2.9 GHz for 20 to 70 dB settings of input attenuator: ±0.6 dB/10 dB step, 1.8 dB maximum Repeatability ±0.1 dB (nominal)

IF gain uncertainty

±1 dB (0 to -80 dBm reference levels with 10 dB input attenuation)

IF alignment uncertainty

±0.5 dB (additional uncertainty only when using 300 Hz RBW)

Resolution bandwidth switching uncertainty ±0.5 dB (relative to 300 kHz RBW)

Pulse digitization uncertainty

(pulse response mode, PRF 3	> 720/sweep time)	
	Log	Linear
RBW ≤ 1 MHz	< 1.25 dB pk-pk	< 4% of ref level
RBW = 2 MHz	< 3 dB pk-pk	< 12% of ref level
Standard Deviation (RBW <	1 MHz)	< 0.2 dB (nominal)

Time-gated spectrum analysis

Gate delay ⁵	Edge mode
Range	3 µs to 65.535 ms
Resolution	1 µs
Accuracy	±1 μs
(From GATE TRIGGER INPUT to positive	edge of GATE OUTPUT)
Gate length	
Range	1 µs to 65.535 ms
Resolution	1 µs
Accuracy	±1 μs
(From positive edge to negative edge of	GATE OUTPUT)

^{1.} Operation below 9 kHz requires Option 856xEC-006

al)

Level mode ≤0.5 µs

^{2.} Absolute flatness values referenced to 300 MHz CAL OUT

^{3.} Typical values at 25 °C

^{4.} Frequency reference accuracy = aging x time since last adjustment + initial achievable accuracy + temperature stability

^{5.} Up to 1 μs jitter due to 1 μs resolution of gate delay clock

Amplitude Specifications, continued

Delayed sweep	
Trigger modes	Free run, line, external, video
Range	
Sweep time < 30 ms	–9.9 ms to +65.535 ms
Sweep time ≥ 30 ms	+2 μs to +65.535 ms
Resolution	1 µs
Accuracy	±1 μs
Demodulation	
Spectrum demodulation	

Spectrum demodulation Modulation type Audio output Marker pause time

AM and FM Speaker and phone jack with volume control 100 ms to 60 s (nominal)

Inputs/Outputs, Agilent 8560 EC Series (All values are nominal)

Type N female, 50 Ω
APC 3.5 mm male, 50 Ω
APC 2.4 mm male, 50 Ω
< 1.5:1 dB
< 2.3:1 dB
≤ –80 dBm
SMA female, 50 Ω
310.7 MHz
–30 dBm
–23 dB
SMA female, 50 Ω
3.000 - 6.8107 GHz
+16.5 dBm ±2.0 dB
BNC female, 50 Ω
+15 Vdc, –12.6 Vdc, and Gnd (150 mA max each)
Sub-miniature mono jack, 0.2 W into 4 Ω
Shared BNC female, 50 Ω
±(10 MHz x freq ref accuracy)
0 dBm
-2 to +10 dBm
BNC, 50 Ω
0 to +1 V full scale
0 to 10 V (no load)
iencies.
0.5 V/GHz.
= 3 to 6.8107 GHz).

Inputs/Outputs, Agilent 8560 EC Series, continued

Blanking/gate	
Output	Shared BNC female, 50 Ω
Blanking mode	
During sweep	Low TTL level
During retrace	High TTL level
Gate mode	
Gate on	High TTL level
Gate off	Low TTL level
External/gate	
Trigger input	Shared BNC female, > 10 k Ω
	Settable to high TTL or low TTL
GPIB	IEEE-488 bus connector
Interface functions	SH1, AH1, T6, L4, LE0, RL1, PP1, DC1, DT1, C1, C28, TE0, SR1
Direct printer output	Supports HP 3630A PaintJet printer, HP 2225A ThinkJet printer
Direct plotter output	Supports HP 7225A/7440A/7470A/7475A/7550A

Options

Option 856xEC-001 second IF output, Agilent 8560 EC Series (all values are nominal)

3 dB bandwidth NF	8560EC	8561EC	8562EC	8563EC	8564EC, 8565EC
conversion gain					
30 Hz to 2.9 GHz ¹	> 25 MHz	> 25 MHz	> 25 dB	> 25 MHz	> 25 MHz
	24 dB	25 dB	20 dB	25 dB	28 dB
	1.2 dB	–6.5 dB	–1.2 dB	–1.2 dB	–1.2 dB
2.9 GHz to 6.5 GHz		> 30 MHz	> 30 MHz	> 30 MHz	> 30 MHz
		26 dB	22 dB	22 dB	23 dB
		_1 dB	–3 dB	—1 dB	–1 dB
6.5 GHz to 13.2 GHz			> 37 MHz	> 37 MHz	> 37 MHz
			26 dB	26 dB	28 dB
			–5.7 dB	–5.7 dB	–5.7 dB
13.2 GHz to 22 GHz				> 45 MHz	> 45 MHz
				30 dB	32 dB
				—8 dB	—8 dB
22 GHz to 26.8 GHz				> 45 MHz	> 45 MHz
				32 dB	35 dB
				—8 dB	—8 dB
26.8 GHz to31.15 GHz					> 25 MHz
					28 dB
					–9 dB
31.15 GHz to 40 GHz					> 25 MHz
					38 dB
					—19 dB
40 GHz to 50 GHz					> 25 MHz
					42 dB
					–23 dB

Option 8560EC-002 Built-in tracking generator²

Frequency specifications	
Frequency range	300 kHz to 2.9 GHz
Accuracy	
After peaking	±(frequency reference accuracy x tuned frequency + 5% x span + 295 Hz)
Tracking drift (nominal)	Usable in 1 kHz RBW after 5 minutes warm-up. Usable in 300 Hz RBW after
	30-minute warm-up.
Minimum RBW	300 Hz ³

^{1.} DC coupled for frequencies below 100 kHz. Option 856xEC-006 required for operation below 9 kHz in Agilent 8563EC, 8564EC, 8565EC.

^{2.} Option 8560EC-002 is no longer offered.

^{3.} Tracking generator not usable with resolution bandwidths \leq 100 Hz.

Options, continued

Amplitude specifications Output level	–10 dBm to +1 dBm
	10 dBm to +2.8 dBm (typical)
Resolution	0.1 dB
Accuracy	
Vernier	±0.20 dB, ±0.5 dBm max (25 °C ±10 °C)
Absolute	±0.75 dB
Level flatness	±2.0 dB
Effective source match	1.92:1 (nominal)
Total absolute accuracy	±3.25 dB
Spurious output (at +1 dBm output power)	
Harmonic spurious	–25 dBc
Non-harmonic spurious	
300 kHz to 2.0 GHz	–27 dBc
2.0 GHz to 2.9 GHz	–23 dBc
LO feedthrough	–16 dBm (3.9 GHz to 6.8 GHz)
Residuals (RF-power-off)	–78 dBm (300 kHz to 2.9 GHz
Dynamic range	
TG feedthrough ¹	
300 kHz to 1 MHz	–95 dBm
1 MHz to 2.7 GHz	–115 dBm
2.7 GHz to 2.9 GHz	–110 dBm
2.7 GHz to 2.9 GHz Dynamic range ² 300 kHz to 1 MHz	
Dynamic range ²	–110 dBm
Dynamic range ² 300 kHz to 1 MHz	-110 dBm 96 dB
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz	–110 dBm 96 dB 116 dB
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz 2.7 GHz to 2.9 GHz Power sweep	–110 dBm 96 dB 116 dB 111 dB
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz 2.7 GHz to 2.9 GHz Power sweep Inputs/outputs	–110 dBm 96 dB 116 dB 111 dB 10 dB range, 0.1 dB resolution
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz 2.7 GHz to 2.9 GHz Power sweep Inputs/outputs RF output (front panel)	–110 dBm 96 dB 116 dB 111 dB 10 dB range, 0.1 dB resolution Type-N female, 50 Ω (nominal)
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz 2.7 GHz to 2.9 GHz Power sweep Inputs/outputs	–110 dBm 96 dB 116 dB 111 dB 10 dB range, 0.1 dB resolution
Dynamic range ² 300 kHz to 1 MHz 1 MHz to 2.7 GHz 2.7 GHz to 2.9 GHz Power sweep Inputs/outputs RF output (front panel)	–110 dBm 96 dB 116 dB 111 dB 10 dB range, 0.1 dB resolution Type-N female, 50 Ω (nominal)

^{1.} Leakage measured with maximum power into 50 $\Omega,$ with 50 Ω loads on the TG output and RF input.

^{2.} Difference between maximum power output and tracking generator feedthrough.

Environmental Specifications, Agilent 8560 EC Series

Per MIL- PRF-28800F, Class 3

Calibration interval

Agilent 8564EC, 8565EC:

Agilent 8560EC, 8561EC, 8562EC, 8563EC:	2 years
Agilent 8564EC, 8565EC:	1 year
Warm-up time	5 minutes in ambient conditions
Temperature	0 °C to +55 °C (operating); –40 °C to +75 °C (not operating)
Humidity	95% @ 40 °C for 5 days
Rain resistance	Drip-proof at 16 liters/hour/sq. ft.
Altitude	15,000 ft. (operating), 50,000 ft. (non-operating)
Pulse shock (half sine)	30 g for 11 ms duration
Transit drop	8-inch drop on six faces and eight corners
Electromagnetic compatibility:	Conducted and radiated interference in compliance with CISPR Pub. 11
	(1990). Meets Mil-STD-461C, part 2, with certain exceptions.
Power requirements:	115 VAC operation: 90 to 140 V rms, 3.2 A rms max, 47 to 440 Hz
	230 VAC operation: 180 to 250 V rms, 1.8 A rms max, 47 to 66 Hz
Maximum power dissipation	
Agilent 8560EC, 8561EC, 8562EC, 8563EC	180 Ω
Agilent 8564EC, 8565EC:	260 Ω
Audible noise (nominal):	< 5.0 Bels power at room temp (ISO DP7779)
Dimensions (w/o handle, cover):	337 mm W x 187 mm H x 461 mm D
Weight (nominal)	
Agilent 8560EC, 8561EC, 8562EC, 8563EC:	16.5 kg (36 lbs)

17.3 kg (38 lbs)

187 mm 163 mm (7 3/8") (6 7/16") Ο 00000 ¥ 427 mm -(16 13/16")-325 mm ◄(12 13/16")-461 mm (18 1/8") 337 mm (13 1/4")⁻ 366 mm (14 7/16")-

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit **www.agilent.com/find/connectivity** for more information. For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States:

(tel) 800 829 4444 (fax) 800 829 4433

Canada:

(tel) 877 894 4414 (fax) 905 282 6495

China:

(tel) 800 810 0189 (fax) 800 820 2816

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (080) 769 0800 (fax) (080)769 0900

Latin America:

(tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2004, 2003, 2001 Printed in USA, June 28, 2004 5968-8156E

