

Agilent E7495B Base Station Test Set

Technical Overview

Comprehensive base station test:

- · Wireless direct connect measurements
 - Over-air test measurements
 - Backhaul measurements

Multiple wireless system testing:

- cdmaOne, CDMA2000 1X, and CDMA2000 1xEV-DO
- GSM, EDGE, TDMA, iDEN and analog systems
- W-CDMA (UMTS), HSDPA

Agilent Technologies

Technicians no longer need to carry armfuls of tools when they perform base station maintenance. All they need is one tool from Agilent Technologies. The Agilent E7495B base station test set:

- Performs all standard BTS and over-air measurements with the accuracy you need – more BTS wireless and wireline measurements than any other test set on the market.
- Minimizes the need for training because of its simple interface, simple procedures, and built-in measurement help.
- Increases each technician's productivity, decreasing time spent per cell site visit.
- Provides technicians with true spectrum analyzer performance for troubleshooting.
- Stands up to rough field use and all weather conditions.
- Costs much less than all the tools it replaces.

Agilent E7495B Base Station Test Set

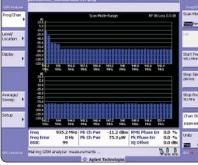
Backlit keys, protected by a water-resistant rubber membrane, make it easy to perform tests under all lighting and weather conditions.

Comprehensive Base Station Test:

- ✓ Power meter
- CW, cdmaOne, CDMA2000 1X, CDMA2000 1xEV-DO, and iDEN reverse link signal generator
- ✓ W-CDMA (UMTS), HSDPA, cdmaOne, CDMA2000 1X, 1xEV-DO over-air test tool
- ✓ Antenna tester/cable fault analyzer
- ✓ Spectrum analyzer

T1 or E1 tester

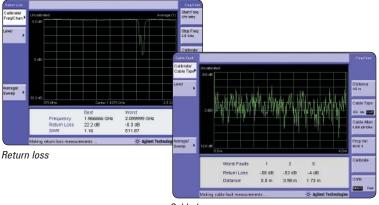
TX RF tests for W-CDMA (UMTS), HSDPA, cdmaOne, CDMA2000 1X, CDMA2000 1xEV-DO, TDMA, GSM, EDGE, GPRS, AMPS, and iDEN


- TX RF modulation analyzer for W-CDMA, HSDPA, (UMTS), GSM, EDGE, cdmaOne, CDMA2000 1X, and CDMA2000 1xEV-DO
- Internal GPS receiver

Now technicians will never have to worry, "Did I bring all the tools I need?" or have to deal with learning different user interfaces found in the various instruments.

 Image: Solution of the soluti

With W-CDMA (UMTS)/CDMA over-air measurements, perform diagnostic tests without taking the base station off-the-air.


Interference analyzer

3.1.1

GSM analyzer

Leverage Your Technicians' Time, **Improve Your Quality of Service**

Cable loss

Test/capability

CW, iDEN, cdmaOne, CDMA2000 1X,

and CDMA2000 1xEV-D0 reverse

link signal generator

over-air test tool

Spectrum analyzer

· cable tests

T1 or E1

W-CDMA (UMTS), HSDPA

Antenna tester with vector

network analysis capability

· distance to fault · swept insertion gain

Channel scanner for CDMA, W-CDMA

(UMTS), cdmaOne, CDMA2000 1X,

CDMA2000 1xEV-DO, TDMA, GSM,

EDGE, GPRS, AMPS, and iDEN

Internal GPS receiver

Interference analyzer

· swept insertion loss

cdmaOne, and CDMA2000 1X

Power meter

Technician benefit

of microwave links.

RF and CDMA sources.

pole top testing practical.

amps and more.

roque interferers.

defined channels.

Replaces the need to carry a separate power meter, simplifying maintenance and shortening site visits.

Additionally, using an appropriate power sensor

enables technicians to make power measurements

Provides the technician with a source to conduct

sensitivity measurements. Additionally, allows a

technician to perform component level characterization

utilizing simultaneous spectrum analysis and built-in

Provides fast measurements in less than five minutes.

Enables time for proactive maintenance and makes

Lets your technicians evaluate one of the primary

various components like filters, duplexers,

BTS (node B) trouble spots in a matter of minutes.

Dual port insertion loss allows technicians to sweep

Provides necessary functionality so your technicians

don't need to carry a separate spectrum analyzer.

Built-in masks and markers make it easy to use. Industry leading low noise figure receiver is capable of measuring down to -150 dBm, allowing technicians to identify and pull out low level, intermittent

Provides position location, highly accurate

strength meter and signal ID capability.

frequency measurements and enables independent

Allows engineers and technicians to find intermittent,

interfering signals using a spectrogram display, signal

verification of base station GPS receiver timing.

Power Meter

Subscriber benefit

Accurate power settings help networks operate at optimum capacity - reducing coverage holes and minimizing the effects of interference.

service quality. Problem areas can be identified without interrupting service.

Reverse link testing helps to ensure network

A healthy antenna and feed line network yields improved voice quality, better system reliability and reduced dropped calls.

Quick interference detection leads to improved quality of service.

Identifies and diagnoses T1 or E1 problems. Dual Fewer wireline problems mean reduced channel capability allows "loop-back" measurements. service problems and down time. The channel scanner quickly identifies improper Provides easy to interpret bar graph display illustrating channel power versus frequency of user power levels that can adversely affect network performance.

> For CDMA networks, the internal GPS receiver helps reduce dropped calls by identifying the "island cell" effect - improving the quality of service.

Eliminating interfering signals from the network improves quality of service.

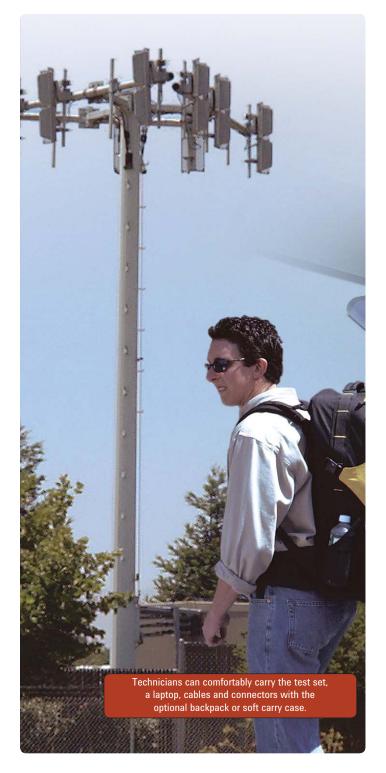
Dramatically Increase Technician Productivity and Maintain High Quality of Service

The Agilent E7495B is the most functional one-box tool on the market, eliminating the need for your technicians to carry, manage and learn multiple test tools.

This helps reduce your asset costs, tracking costs, calibration and maintenance costs, and the training costs associated with learning the specifics of separate instruments.

The E7495B has a remarkably short learning curve because of its simple interface and accessible learning tools. So your engineers and technicians – even those with limited knowledge or experience – will be performing BTS measurements in less time. In turn, experienced engineers can devote more of their time resolving chronic coverage problems, planning new sites, and expanding into new services and technologies.

The simple procedures plus exceptionally usable hardware combine to produce shorter net time per cell site visit. Now each technician can handle more cell sites and have the time to conduct more proactive maintenance.


The field-rugged design means less downtime, more field time.

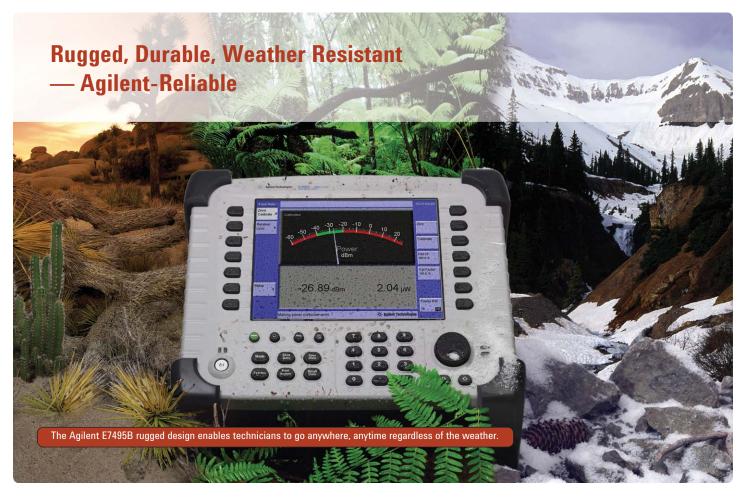
Engineered-in extensibility lets you do more today and tomorrow. Today, a variety of I/O ports permit data sharing with other tools and software. All feature upgrades will be done through hardware or firmware inside the case, preserving the single-case convenience and reliability.

Having the most frequently used BTS tools in one box dramatically increases your technicians' productivity.

Agilent Puts the Emphasis on Usability

The Agilent base station test set is so easy to use, it minimizes the need for training. Technicians will get up to speed fast – and get their work done quickly every day.

The intuitive hardkey/softkey interface, used for all measurements, means there's less of a learning curve.


The built-in measurement help leads technicians through each measurement task step-by-step. Other learning tools include a user's guide and an optional web-based tutorial.

Backlit hardkeys, protected by a water-resistant rubber membrane, make it easy to perform tests under all lighting and weather conditions. A transflective color display stays viewable even in direct sunlight and at wide viewing angles. Result: faster, more accurate readings.

Technicians can hand-carry the unit with a soft carry case or use the ergonomically designed backpack to free up their hands. The backpack includes a comfort-contoured back panel, full padded hipbelt, plus extra pockets and tool loops for other hardware and supplies.

Snap-in battery packs provide up to three hours of performance. You can "hot swap" batteries in seconds.

> Snap-in battery pack allows technicians to go to remote sites without the hassle of restrictive power cords.

A single-box measurement solution makes sense only if it can stand up to rough field use and unexpected weather. So we designed the Agilent base station test set to be rugged, durable and weather resistant.

A magnesium alloy case with extensive internal RF shielding protects the components, reduces interference that could impact measurement accuracy, and makes the test set easy to handle and carry. Gasketed ports, water-resistant rubber membrane, and dust-proof case design (no fan, no vents) add to the ongoing confidence you can have in the measurements. The soft carry case or backpack protects the unit on the way to and from the site.

We know that you'll want to add new capabilities as your network evolves. So we made sure that all functionality upgrades will be implemented through firmware or hardware inside the case. The Agilent test set grows in functionality without growing in size. The field-rugged design is never compromised by awkward external modules.

Features and Benefits Summary

Multiple tools

Power meter	The built-in power meter replaces the need to carry a separate power meter, simplifying overall maintenance routines and shortening site visits. Additionally, using an appropriate power sensor enables technicians to make power measurements of microwave links. Accurate power settings help technicians maximize network capacity while reducing coverage holes and minimizing the effects of interference.
W-CDMA (UMTS), HSDPA, cdmaOne, CDMA2000 1X, and CDMA2000 1xEV-DO over-air test tool	Provides fast, qualified measurements in less than five minutes. Enables time for proactive maintenance and makes pole top testing practical. Problem areas can be identified without interrupting service.
CW, cdmaOne, CDMA2000 1X, CDMA2000 1xEV-DO, and iDEN reverse link signal generator	Provides the technician with a source to conduct sensitivity measurements. Additionally, this option allows a technician to perform component level characterization utilizing simultaneous spectrum analysis and built-in RF and CDMA sources. Reverse link testing helps to ensure network Rx service quality.
Antenna tester with vector network analysis capability • cable tests • distance to fault (DTF) • swept insertion loss • swept insertion gain	Lets technicians evaluate one of the primary BTS trouble spots in a matter of minutes. Dual port insertion loss allows technicians to sweep various components like filters, duplexers, amps and more. DTF resolution includes 256, 512, or 1024 data points, enough resolution to locate and isolate faults within a few centimeters (inches) of one another or resolve short jumper cables at the end of a long antenna feed line. A healthy antenna and feed line network yields improved voice quality, better system reliability and reduced dropped calls.
T1 or E1	Identifies and diagnoses T1 or E1 problems. Dual channel capability allows "loop-back" measurements. Fewer wireline problems mean reduced service problems and down time.
Spectrum analyzer	Provides necessary functionality so technicians don 't need to carry a separate spectrum analyzer. Built-in spectrum emissions masks, occupied BW, Spectrogram, and markers make it easy-to-use. Industry-leading low noise figure receiver is capable of measuring down to -150 dBm, allowing technicians to identify and pull out low level, intermittent rogue interferers. Quick interference detection leads to improved quality of service.
Channel scanner for CDMA, W-CDMA (UMTS), cdma0ne, CDMA2000 1X, CDMA2000 1xEV-DO, TDMA, GSM/EDGE GPRS, AMPS, and iDEN	Provides easy to interpret bar graph display illustrating channel power versus frequency of user defined channels. The channel scanner quickly identifies improper power levels that can adversely affect network performance.
TX RF modulation analysis for W-CDMA (UMTS), cdma0ne, CDMA2000 1X, CDMA2000 1xEV-DO, GSM, and EDGE	TX modulation testing provides extensive transmitter analysis for various 2 to 3G formats like modulation quality (phase error, Rho, EVM), time offset, code domain power and display, channel power, etc. In addition, W-CDMA, and CDMA applications include Codogram analysis.
Internal GPS receiver	Provides position location, highly accurate frequency measurements and enables independent verification of base station GPS receiver timing. For CDMA networks, the internal GPS receivers help reduce dropped calls by identifying the "island cell" effect – improving the quality of service.
Interference analysis • spectrogram display • modulation ID function	Allows engineers and technicians to find intermittent, interfering signals using a spectrogram display, signal strength meter and signal ID capability. Eliminating interfering signals from the network improves quality of service.

See Specification section for more details.

Features and Benefits Summary continued

Ease-of-use

Transflective color display	Speeds up measurement readings because the display remains viewable in darkness, shade and direct sunlight.
Single hardkey user interface	Provides easy navigation to perform quick and accurate measurements – even with gloves on.
Backlit keys	Makes it easier to perform tests under all lighting and weather conditions.
Built-in measurement help	Provides step-by-step instructions for measurements.

Rugged design

Magnesium alloy case	Provides a lightweight yet strong enclosure; enhances heat distribution and RF shielding.
Water-resistant rubber membrane key pad and sealed display	Enables technicians to go anywhere, anytime – regardless of the weather. Seals out water and dirt to help ensure measurement performance.
Dust-free case design (no vents or fan)	Keeps the unit free of moisture and dirt.
Gasketed ports	Protects components from moisture and harsh weather.
Wide operating temperature range –10 to 50 °C/14 to 122 °F	Performs well even in extreme cold and hot conditions.
Entensive internal RF shielding	Reduces RF interference that could impact measurement results.
Rubber bumpers	Protects the unit while in rugged field environments.

Extensible

Flexible architecture	Easily upgradeable to meet future network needs without growing in size.
Remote monitoring	Allows technicians to remotely monitor problematic base stations from the comfort of their own desk.
Upgradeable	Upgradeable in the field. With license key enabled upgrades, to test set does not need to go back to the factory for upgraded funcationality
Linux operating system	Provides a safe stable and efficient operation system.
Compact Flash, PCMCIA card slot, and LAN connection	Makes saving and transferring measurement results to your PC or network quick and easy. Enables data to be easily captured and transmitted to your network.
Antenna test post processing tool	Post processing software enables easy data collection and report generation
File export	Allows you to easily save data to $Microsoft^{\circledast}$ Excel files and images to PNG files for use with a PC.

See Specification section for more details.

E7495B Base Station Test Set Specifications

Specifications describe the instrument's warranted performance and are valid over the entire operating/environmental range unless otherwise noted.

Characteristics and specifications are show as follows:

- Bold type indicates a warranted, hard specification
- Normal type indicates a nominal value. Nominal values are design center values and are not normally tested during the manufacturing process
- Supplemental characteristics are intended to provide additional information useful in applying the instrument by giving typical, but not warranted, performance parameters. These characteristics are show in italics or labelled as "typical," or "usable to."

General specifications

Unless otherwise noted the following specifications apply to all measurements/tools using **port 2**.

Frequency accuracy:

Using internal time base:	$\leq \pm 1$ ppm with > 15 minute warm-up
Internal time base aging:	\pm 1 ppm aging/year
With GPS lock for:	> 15 minutes: $\leq \pm 0.03$ ppm
Input frequency range:	
10 MHz to 2700 MHz	
Usable to 500 KHz (specifica	tions and typical values do not apply below
375 MHz unless otherwise r	noted)
Maximum input level:	+20 dBm (.1 W), +50 dBm w/supplied attenuator

 $\geq 0 \text{ dBm}$

 $\geq 0 \text{ dBm}$

≥0 dBm

 $\geq 0 \text{ dBm}$

 $\geq 0 \text{ dBm}$

 $\geq 0 \text{ dBm}$

256

10

1 to 20 dB/div. settable in 1 dB increments

Maximum input power without

damaging instrument:

100 W (with external attenuator) 1W (without attenuator)

Frequency and time reference:

Can use internal timebase or external signal: GPS (external antenna supplied) Even second; pulse 1 MHz ≥ 0 dBm

2.048 MHz 4.95 MHz 10.0 MHz 13.0 MHz 15.0 MHz 19.6608 MHz

Display: Scale:

Number of points:

Number of divisions:

40 dB attenuator:

Frequency range: Attenuation accuracy: Max power:

Spectrum analyzer/tools

Input frequency range:	10 MHz to 2700 MHz (usable to 500 KHz)
Reference level range:	–150 to +100 dBm
Dynamic range:	+50 dBm to –150 dBm
	(with supplied 40 dB attenuator) (30 Hz RBW)
Input attenuation:	0 to 30 dB automatically selected,
	10 dB controllable manually
Amplitude accuracy:	± 1 dB (100 to 2500 MHz at 25 °C)
Adjacent channel power	
accuracy:	± 0.75 dBc

10 to 3000 MHz

± 0.5 dB 50 dBm (100 W)

 For antenna/cable measurements, a short self-calibration procedure must be run prior to making the measurement. For more information about the calibration procedures and when they are needed, see sections 2 and 3 in the users manual or use the online help.

Resolution bandwidth:	10 Hz to 1 MHz, settable to 1 Hz precision
Span:	1 KHz to 2.6995 GHz
Trace update:	
Span:	2.49 GHz = 5.1 sec
	60 MHz = 400 mS
	1 MHz, 100 Hz RBW 1.2 sec
Simultaneous dynamic range:	> 90 dB (CW signals at 300 KHz separation,
	span 500 KHz, 30 Hz RBW)
SSB phase noise:	≤ –85 dBc (30k Hz offset)
Spurious responses:	
Range control set to auto, hi	gh sensitivity mode
Internally generated, 50 Ω	
load on input:	<-115 dBm
Crossing spurs:	\leq -50 dBc
Displayed average noise level:	-150 dBm (30 Hz RBW, 375 MHz to 1.5 GHz)
Port 2 VSWR:	< 2:1

1011 / 1 1411

Antenna/cable analyzer¹

1.114

Frequency range:	375 to 2500 MHz
Frequency resolution:	< 500 Hz
Immunity to interfering signals	: +20 dBm (with interference rejection turned on)
Measurement speed:	
Full span:	< 17 mS
60 MHz span:	< 7 mS
Return loss (port1)	
With \geq 16 averages:	375 to 2500 MHz
Range:	> 40 dB
VSWR:	< 1.02
Resolution:	0.1 dB
Display range:	–5 to +150 dB
SWR range:	1 to 500
Distance to fault (port1)	
Range (m):	1 m to 300 m

Range (m):	1 m to 300 m
Resolution:	(1.5 x 10 ⁸) (Vf)/(f2-f1) Hz where VF is relative
	propagation velocity of cable. (typically 1 % of
	measurement distance)
VSWR:	1 to 500
Number of Data Points:	256, 512, 1024

Example table illustrating the effects of data points and span versus measured distance and resolution (Vf of 93.1 %):

Data Points	Span	Measured distance	Resolution
256	140 MHz	127.68 m	50 cm (19.6 inch)
512	140 MHz	255.36 m	50 cm (19.6 inch)
512	280 Mhz	127.68 m	25 cm (9.8 inch)
1024	560 MHz	127.68 m	12.5 cm (4.9 inch)

Insertion loss (port 1 to port 2)

Options

cdmaOne, CDMA2000 1X analyzer Option 200

Waveform quality (rho)
accuracy:± .005 for 0.9 (min power @ RF input > -85 dBc)Pilot time alignment (tau):± 500 nSecCode domain power
accuracy:± 1.5 dB absolute, ± 0.5 dB relative (> -20 dB)Pilot power:± 1.5 dB

CDMA2000 1xEV-DO (Rev 0, Rev A) analyzer Option 205

± .008 for 0.9 < p < 1.0
(min power @ RF input > –70 dBc)
± 20Hz (with freq/time ref set to external
even sec or GPS)
± 500 nSec
\pm 1.5 dB absolute, \pm 0.5 dB relative (> -20 dB)
± 1.5 dB

RF channel scanner Option 220

Measurement range:	+20 to –125 dBm (up to +50 dBm with external
	attenuator > 375 MHz, 10 KHz RBW)
Frequency readout accuracy:	<i>Time base accuracy</i> +3 Hz + 1/(measurement
	time X duty cycle)
RF channel power:	± 1 dB (100 to 2500 MHz)

GSM/EDGE TX analyzer Option 230/235

RF channel power accuracy:	± 1 dB (0 to -70 dBm)
Phase error floor:	< 2 ° RMS
Phase error accuracy:	< 1 ° RMS, 2 ° ≤ phase error ≤ 15 °
EVM floor:	< 3.5 % RMS,
EVM accuracy:	< 1.4 % RMS, 4 %<= EVM<=10 %
Frequency error accuracy:	± 40 Hz with external reference

W-CDMA/HSDPS TX analyzer Option 240/245

Error vector magnitude:	Resolution 0.1	
Conditions:	Min power at RF input > -65 dBm, 3GPP test model 4	
Code domain power		
accuracy:	\pm 0.5 dB for code channel power > -25 dB relative to total power using test model 1 (with 16 DPCH, 32 DPCH, and 64 DPCH), test model 2, test model 3 (with 16 DPCH an 32 DCPH) and test model 5 (with 8 HS-PDSCH)	
Scrambling code		
determination:	1 second (in auto mode)	
Code domain power		
display update:	1.5 sec	
DC bias Option 300 (port 1 only)		
Frequency range:	375 to 2500 MHz	
DC voltage:	+12.7 VDC max	
DC current:	800 mA max	
Volt-amps:	9.84 VA max	

Signal generator (CW) Option 500 (port 1)

Frequency range:	375 to 2500 MHz
Output level:	–23 to –90 dBm
Level accuracy:	± 1 dB (-25 to -85 dBm)
Phase error:	at 30 KHz offset –90 dBc/Hz

cdmaOne, CDMA2000 1X, CDMA2000 1xEV-DO, iDEN (requires Option 205) reverse link signal generator

 Option 510 (port 1)

 Frequency range:
 375 to 2500 MHz

 Output level:
 -28 to -95 dBm E7495B; A= -50 to -95 dBm

 Level accuracy:
 ± 0.7 dB (at 25 °C, -44 dBm to -95 dBm)

 ± 1 dB (at 25 °C, -28 dBm to -43 dBm)

Minimum and Maximum Power levels for Generated Signals

This table provides the Minimum and Maximum signal power levels with updated data.

apaaroa aatai	E7495A		E7495B	
Signal	Max. power	Min. power	Max. power	Min. power
CDMA Forward Link Pilot Only No Filter	—47 dBm	–95 dBm	–28 dBm	–95 dBm
CDMA Forward Link Pilot Only Filtered	—47 dBm	–95 dBm	–28 dBm	–95 dBm
CDMA IS-95 Rev Link RC1 9.6 Kbps Zero Data Traffic	—47 dBm	–95 dBm	–28 dBm	–95 dBm
CDMA IS-95 Rev Link Zero Data Access	—47 dBm	–95 dBm	—28 dBm	–95 dBm
CDMA IS-95 Rev Link RC1 9.6 Kbps Random Data Traffic	—47 dBm	–95 dBm	—28 dBm	–95 dBm
CDMA IS-95 Rev Link RC2 14.4 Kbps Zero Data Traffic Channel	—47 dBm	–95 dBm	—28 dBm	–95 dBm
R-FCH RC3 Zero Data Fundamental	—47 dBm	—95 dBm	—28 dBm	–95 dBm
R-FCH RC3 Random Data Fundamental	—47 dBm	—95 dBm	–28 dBm	–95 dBm
1xEV-DO Reverse Link 9.6Kb 15PN Data (ARB) FW A.04.00 to A.06.00		–96.5 dBm	–29.5 dBm	–96.5 dBm
1xEV-DO Reverse Link 9.6Kb 15PN Data (ARB) FW A.06.10 and higher	—49.3 dBm	–97.3 dBm	–30.3 dBm	–97.3 dBm
1xEV-DO Rev A Rev Link 9.6Kbps 15PN Data (ARB)	–50.5 dBm	–98.5 dBm	–31.5 dBm	–98.5 dBm
1xEV-DO Rev A Rev Link 460.8Kbps 15PN Data (ARB)	–51.7 dBm	–99.7 dBm	–32.7 dBm	–99.7 dBm
iDEN 1/6th Inbound (ARB)	–52.1 dBm	–100.1 dBm	–33.1 dBm	–100.1 dBm

1. Attenuator can be characterized to within 0.1dB in the mobile phone bands using the insertion loss measurement. This value can be stored for use with the power meter.

Power meter Option 60	0	Transmitter and receiver	
Display		Framing:	Unframed, D3/D4 & ESF
Range:	–100 dBm to +100 dBm	Channel formats:	Full T1, 64x1
	(range is power sensor dependent)	T	
Display limits:	± 100 dBm (user settable)	Test patterns:	QRSS, all Os, 1:7, 2 in 8, 3 in 24, all 1s,
Resolution:	Settable 1.0, 0.1, 0.01, 0.001 in logarithmic mode,	Error injection	T-1-Daly, 55 OCTET
A	or 1, 2, 3, or 4 significant digits in linear mode	Error injection	PDV from CPC nottorn (logic)
Accuracy		Type: Error rate:	BPV, frame, CRC, pattern (logic)
Instrumentation: Absolute:	\pm 0.02 dB (log) or \pm 0.5 % (linear). Add the	Alarm inject	Single
Absolute.	,	Type:	LOS, LOF, yellow, AIS, idle (CDI)
Relative:	corresponding power sensor linearity percentage. ± 0.04 dB (log) or ± 1.0 % (linear). Add the	туре.	203, 201, yellow, Al3, lule (6DI)
	corresponding power sensor linearity percentage.	E1 analyzer Option 710	
Zero set:	corresponding power sensor intearity percentage.	Features	
	ero with a power sensor: \pm 50 nW	Error detect:	Code (BPV), FAS, MFAS,CRC-4, far end block
Power reference:			(FEBE), pattern, frame slip
Power output:	1.00 mW (0.0 dBm) traceable to the U.S. National	Error rate calculation:	Bit-error-rate, error free seconds, errored seconds
i onoi output.	Institute of Standards and Technology (NIST).	Alarm detect:	AIS, TS-16 AIS, FAST DISTANT, MFAS DISTANT
Accuracy:	\pm 1.2 % worst case (\pm 0.9 % rss) for one year.	Clock and frame slips:	Clock slips, frame slips, peak wander, clock slip rate
SWR:	< 1.08	Auto configuration:	Automatically detect line code, framing and
External attenuator			test pattern
Max power:	100 W	Receive level	
Attenuation:	40 dB ± 0.5 dB ¹	(line 1 and line 2):	+6 dB DSX to -36 dB DSX or 100 mv p-to-p
-			to 12 v p-to-p
	0 with Agilent N8482A-CFT power sensor	Receive frequency (line1):	Display receive frequency (± 5 ppm)
	8481A/D and 8484A power sensors)	Channel access:	output audio to system
Frequency range:	100 KHz to 6 GHz	Delay measurement:	Measure delay in unit intervals for
Dynamic Range:	–30 dBm to +20 dBm		"looped-back" signal
Measurement noise:	< 114 nW	Electrical interface	
Zero drift:	< ± 7 nW	Connectors, RX, TX:	Primary and secondary ports
EEPROM feature is disabled	to maintain backward compatibility with 8480 Series	Output:	Conforms to ITU-T Rec.G.703
T1 analyzer Option 700		Line code:	AMI, HDB3
Features:		Impedance:	
Receive level:	(Line 1 and line 2) +6 dB DSC to –36 DB DSX or	impouurioo.	Terminate: 75 Ω ± 5 % bridge: > 1000 Ω
	100 mv p-to-p to 12 v p-to-p	Input:	Terminate: DSX +6 dB to DSX –36 dB
	Receive frequency display receive frequency	Bridge:	DSX +6 dB to DSX –36 dB
	(5 ppm) (line 1 and line 2) "Loop-back" control		
	send CSU or NIU loop codes CSU/NIU emulation	Clock:	2.048 MHz
	respond to CSU or NIU loop codes	Internal:	± 5 ppm
		External:	± 300 ppm
Electrical interface		Recovered:	± 300 ppm
Connectors, RX, TX:	Primary and secondary ports		
Output:	Conforms to TR-TSY-000499, CCITT Rec.G.703	Transmitter and receiver	
	AT&T Pubs CB113, CB119, CB132, CB143	Framing:	Unframed, PCM-30, PCM-30 with CRC, PCM-31,
	PUB62508 and PUB62411 pulse shape		PCM-31 with CRC
	specifications when terminated in 100 $\boldsymbol{\Omega}$ and	Channel formats:	Full E1, 64x1
	0 dB line build-out is selected	Test patterns:	(True or Inverse, ITU Rec) 2 ⁶ -1 (Q6 & Q5), 2 ⁹ -1 (V.52),
Line build-out:	0 dB, -7.5 dB, -15 dB		2 ¹¹ -1 (0.152), 2 ¹⁵ -1 (0.151) 2 ²⁰ -1 (V.57), QRSS,
Input:			2 ²³ -1 (0.151), all 0's, 1:7, 1:3, 1:1, all 1's
Terminate:	DSX +6 dB to DSX –36 dB, 100 Ω	Error injection	
Monitor:	DSX –14 dB to DSX –40 dB, 100 Ω	Туре:	Code (BPV), FAS, MFAS, CRC-4, far end block
Bridge:	DSX +6 dB to DSX -36 dB, > 1000 Ω	_	(FEBE), pattern
Clock:	1.544 MHz	Error rate:	Single
Internal:	± 5 ppm		Alarm generation AIS, TS-16 AIS, FAS DISTANT,
External:	± 300 ppm		MFAS DISTANT, loss of signal, loss of frame
Recovered:	± 300 ppm		

General

Display

Transflective VGA color LCD

Physical dimensions

Height:	11.6 in, 295 mm
Width:	14.5 in, 368 mm
Depth:	5.3 in, 135 mm
Weight (without batteries):	20 lbs, 9.1 kg, fully hardware optioned

Power

Power supply

Lithium ion battery: 10.8 volts, 6.0 Ah
(1 NI2040AG shipped standard, will
accept two batteries)
+9 V to +25 V DC 4 amps
Approximately 1.5 per battery
(time varies dependent upon instrument mode)

Interface ports

Two RS 232 (DB-9) (reserved for future use) Two USB 1.1 (reserved for future use) One LAN port: 10 base T Built-in speaker PCMCIA card slot Compact flash memory (type 1 & 2) Stereo headphone jack General purpose input/output: TTL level (reserved for future use)

50 Ω , type N

-10 to + 10 dBm

TTL compatible

High impedance BNC

50 Ω BNC

SMA 5 V at 50 mA

+9 V to +25 VDC 4 amps

Inputs

Port 2 RF in:

External DC input: **Frequency reference:**

Input power: Connector:

Even second:

Connector:

Level: **GPS** antenna:

Connector:

Output:

Outputs

Port 1 RF out/SWR: Connector: Power reference:

50 Ω, type N

Optional connectors

Option 600 power meter Outputs: Inputs: Option 700 T1 analyzer Outputs: Inputs: Option 710 E1 analyzer Outputs: Inputs:

50 Ω type N; SWR < 1.06

Type N 50 Ω power reference Sensor input for 8480 series sensors

(2) Bantam outputs; TX primary and secondary (2) Bantam inputs; RX primary and secondary

(2) 75 Ω BNC outputs; TX primary and secondary (2) 75 Ω BNC inputs; RX primary and secondary

Operating temperature

Specified temperature range: -10 to 50 °C; 14 to 122 °F

Storage temperature

-40 to 70 °C; -40 to 158 °F

Calibration Cycle:	one year
Warranty Duration:	one year

Ordering information - E7495B base station test set

Standard test set functionality includes spectrum analysis and antenna measurements

Standard accessories include:

- · PCMCIA 64 MB flash memory card
- AC/DC converter
- NI2040AG lithium ion battery
- GPS antenna
- 10 dB Coaxial attenuator (02)
- Coax 50 Ω terminated N-male
- Open/short M type N
- · Adapter storage box
- Shoulder strap
- Documentation (CD ROM)A
- 2' M-N to M-N cables (02)
- 10' M-N to M-N cable
- N-female to N-female barrel (02)

Adapters

Ordering information – options Note: Upgrade options for the E7495A/B use the designation E7495XU before the respective option number.

E7495B-200	cdmaOne and CDMA2000 1X TX analyzer
E7495B-205	CDMA2000 1xEV-DO analyzer (RX testing requires Option 510,
	adds OTA functionality if Option 210 is selected)
E7495B-210	cdmaOne, CDMA2000 1X over-the-air test (requires Option 200,
	recommend 810/811/812 or equivalent)
E7495B-220	Channel scanner
E7495B-230	GSM TX analyzer
E7495B-235	EDGE TX analyzer
E7495B-240	W-CDMA (UMTS) TX analyzer
E7495B-245	HSDPA TX analyzer
E7495B-250	W-CDMA (UMTS) over-the-air test (requires Option 240,
	recommend 813 or equivalent)
E7495B-270	Interference analyzer
E7495B-300	DC Bias
E7495B-330	Nortel CDMA base station software (requires Option 200, 510, 600)
E7495B-500	CW signal generator
E7495B-510	CW, cdmaOne, CDMA2000 1X, CDMA2000 1xEV-DO, iDEN
57405D 000	(requires Option 205) reverse link signal generator
E7495B-600	Power meter (requires power sensor)
E7495B-700	T1 analyzer
E7495B-710	E1 analyzer
E7495B-801	Soft carry case
E7495B-802	Backpack
E7495B-803	40 dB 100 W attenuator
E7495B-805	Paper manual
E7495B-810	Cellular antenna and pre-selector filter for Option 210
E7495B-811	PCS antenna and pre-selector filter for Option 210
E7495B-812	Korean PCS antenna and pre-selector filter (required for Option 210)
E7495B-813	Antenna and pre-selector filter (required for Option 250)
E7495B-820	Battery pack, external battery charger, DC car adapter
E7495B-840	Transit case
E7495B-51B	Return to Agilent repair
E7495B-50C	Return to Agilent calibration
N8482A-CFT	Power sensor

Additional Agilent Literature

CD

Agilent Base Station Test Set literature number 5988-7189EN

Photo Card

Agilent E7495A/B Base Station Test Set: Option 330 Nortel CDMA Base Station Test Software *literature number 5988-1783EN*

Agilent E7495B Base Station Test Set: E7495B Option 205-1xEV-DO Analyzer E7495XU Option 205-1xEV-DO Analyzer upgrade E7495B Firmware upgrade 4.0 *literature number 5989-2846EN*

Agilent E7495B Base Station Test Set: E7495B Option 240-W-CDMA Analyzer E7495B Option 245-HSDPA Analyzer E7495B Option 250-W-CDMA/HSDPA OTA *literature number 5989-4060EN*

Agilent E7495A/B Base Station Test Set: E7495A/B Option 230-GSM Ananyzer E7495A/B Option 235-EDGE Analyzer E7495A/B Option 270-Interference Analyzer *literature number 5989-4563EN*

For More Information

For more information about Agilent's solutions for the communications industry, visit our Web site at **www.agilent.com**

For more information about the Agilent E7495B Base Station Test Set, go to: www.agilent.com/find/E7495B

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Microsoft[®] and Windows[®] are U.S. registered trademarks of Microsoft Corporation.

Pentium[®] is a U.S. registered trademark of Intel Corporation.

cdma2000[®] is a registered certification mark of the Telecommunications Industry Association. Used under license.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	43 (0) 1 360 277 1571	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 15 15	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	49 (0) 7031 464 6333	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		
Revised: October 1, 2009		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010 Printed in USA, March 22, 2010 5988-7186EN

www.agilent.com