

 performing model. Features, performance, and value combine to
make the 69100 A and 68100 B the optimum sources for your network
 †ечł Sluәшәц!

$$
\text { gld勺 } \quad \geqslant)
$$ 69 A, 688 series

10 MHz to 65 GHz

SYNTHESIZED SWEEP/SIGNAL GENERATOR

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS

/nritsu

El Toro synthesizers product selection table

Model	68000B	69000A	68100B	69100A	68200B	69200A	68300B	69300A
Ultra low ø noise		\checkmark		\checkmark		\checkmark		\checkmark
Step sweep	\checkmark							
Analog sweep			\checkmark	\checkmark			\checkmark	\checkmark
Power sweep	\checkmark							
Alternate sweep	\checkmark							
Master/slave	\checkmark							
AM			Ext	Ext	Int/Ext	Int/Ext	Int/Ext	Int/Ext
FM			Ext	Ext	Int/Ext	Int/Ext	Int/Ext	Int/Ext
øM					Opt. 6	Opt. 6	Opt. 6	Opt. 6
Pulse modulation			Ext	Ext	Int/Ext	Int/Ext	Int/Ext	Int/Ext
AM scan (1 to 20 GHz)					Opt. 20	Opt. 20	Opt. 20	Opt. 20
Internal power meter					Opt. 8	Opt. 8	Opt. 8	Opt. 8
360B SS Mode			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

El Toro family model summary

	68000B CW Generator	$69000 A^{* 1}$ CW Generator	68100 B Sweep Generator	$69100 A^{* 1}$ Sweep Generator	68200 B Signal Generator	69200A*1 Signal Generator	68300 B Sweep/Signal Generator	$69300 A^{* 1}$ Sweep/Signal Generator
2 to 20 GHz	68037 B	69037 A	68137 B	69137 A	68237 B	69237 A	68337 B	69337 A
0.5 to 20 GHz	68045 B	69045 A	68145 B	69145 A	68245 B	69245 A	68345 B	69345 A
0.01 to 20 GHz	68047 B	69047 A	68147 B	69147 A	68247 B	69247 A	68347 B	69347 A
2 to 26.5 GHz	68053 B	69053 A	68153 B	69153 A	68253 B	69253 A	68353 B	69353 A
0.01 to 26.5 GHz	68059 B	69059 A	68159 B	69159 A	68259 B	69259 A	68359 B	69359 A
2 to 40 GHz	68063 B	69063 A	68163 B	69163 A	68259 B	69263 A	68363 B	69363 A
0.01 to 40 GHz	68069 B	69069 A	68169 B	69169 A	68265 B	69269 A	68369 B	69369 A
0.01 to 50 GHz	68077 B	69077 A	68177 B	69177 A	68277 B	69277 A	68377 B	69377 A
0.01 to 60 GHz	68087 B	69087 A	68187 B	69187 A	68285 B	69287 A	68377 B	69387 A
0.01 to 65 GHz	68097 B	69097 A	68197 B	69197 A	68297 B	69297 A	68395 B	69397 A

*1: Complete performance specifications for 69A synthesizers are available in the 69A Series Synthesizers Technical Data Sheet, part number 11410-00175

Specifications

		Models	Frequency range	Output power	Output power with step attenuator
	6XX37		≥ 2 to $\leq 20 \mathrm{GHz}$	+13 dBm	+11 dBm
	6XX45		≥ 0.5 to $\leq 20 \mathrm{GHz}$	+13 dBm	+11 dBm
	6XX47		≥ 0.01 to $\leq 20 \mathrm{GHz}$	+13 dBm	+11 dBm
	6XX53		$\begin{aligned} & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +9 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +7 \mathrm{dBm} \\ & +3.5 \mathrm{dBm} \end{aligned}$
	6XX59		$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +9 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +7 \mathrm{dBm} \\ & +3.5 \mathrm{dBm} \end{aligned}$
	6XX63		$\begin{aligned} & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +9 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +7 \mathrm{dBm} \\ & +3 \mathrm{dBm} \end{aligned}$
	6XX69		$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +9 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +7 \mathrm{dBm} \\ & +3 \mathrm{dBm} \end{aligned}$
	6XX77		$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \\ & >40 \text { to } \leq 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +12 \mathrm{dBm} \\ & +10 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0 \mathrm{dBm} \\ -1 \mathrm{dBm} \end{gathered}$
	6XX87		$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \\ & >40 \text { to } \leq 50 \mathrm{GHz} \\ & >50 \text { to } \leq 60 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +12 \mathrm{dBm} \\ & +10 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \\ & +2 \mathrm{dBm} \\ & +2 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0 \mathrm{dBm} \\ -1.5 \mathrm{dBm} \\ -2 \mathrm{dBm} \end{gathered}$
	6XX97		$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \\ & >40 \text { to } \leq 50 \mathrm{GHz} \\ & >50 \text { to } \leq 65 \mathrm{GHz} \end{aligned}$	$\begin{gathered} +12 \mathrm{dBm} \\ +10 \mathrm{dBm} \\ +2.5 \mathrm{dBm} \\ 0 \mathrm{dBm} \\ -2 \mathrm{dBm} \end{gathered}$	-
		6XX37	≥ 2 to $\leq 20 \mathrm{GHz}$	+17 dBm	+15 dBm
		6XX45	$\begin{aligned} & \geq 0.5 \text { to } \leq 2.2 \mathrm{GHz} \\ & >2.2 \text { to } \leq 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +17 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +15 \mathrm{dBm} \end{aligned}$
		6XX47	$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +17 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +15 \mathrm{dBm} \end{aligned}$
	With Option 15 (high power)	6XX53	$\begin{aligned} & \geq 2 \text { to }<20 \mathrm{GHz} \\ & \geq 20 \text { to } \leq 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +7.5 \mathrm{dBm} \end{aligned}$
	installed	6XX59	$\begin{aligned} & \geq 0.01 \text { to }<2 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +7.5 \mathrm{dBm} \end{aligned}$
		6XX63	$\begin{aligned} & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$+11 \mathrm{dBm}$
		6XX69	$\begin{aligned} & \geq 0.01 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13 \mathrm{dBm} \\ & +6 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11 \mathrm{dBm} \\ & +3 \mathrm{dBm} \end{aligned}$

	Levelled output power range	Without an attenuator	Maximum levelled power to $-15 \mathrm{dBm}(-20 \mathrm{dBm}$ typical). For units with Option 15 installed, minimum settable power is $-5 \mathrm{dBm}(-10 \mathrm{dBm}$ typical).						
		With an attenuator	Maximum levelled power to -115 dBm (-120 dBm typical). For units with upper limit $\geq 50 \mathrm{GHz}$ and units with Option 15 installed, minimum settable power is -105 dBm (-110 dBm typical).						
	Unleveled	Without an attenuator	$>40 \mathrm{~dB}$ below max power						
	range (typical)	With an attenuator	>130 dB below max power						
	Power level switching time	Without change in step attenuator	<1 ms typical						
	(to within specified accuracy)	With change in step attenuator	<20 ms typical						
	Accuracy and flatness (step sweep and CW modes)		Attenuation below max power	$\begin{aligned} & 0.01 \text { to } \\ & 0.05 \mathrm{GHz} \end{aligned}$	0.05 to 20 GHz	20 to 40 GHz	40 to 50 GHz	50 to 60 GHz	60 to 65 GHz
		Accuracy	0 to 25 dB	$\pm 2.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$
			25 to 60 dB	$\pm 2.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	-
			$>60 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	-
		Flatness	0 to 25 dB	$\pm 2.0 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$
			25 to 60 dB	$\pm 2.0 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 3.1 \mathrm{~dB}$	-
			$>60 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 2.1 \mathrm{~dB}$	$\pm 3.1 \mathrm{~dB}$	-
	Output power resolution		0.01 dB						
	Level offset		Offsets the displayed power level to establish a new reference level						
	CW power sweep	Range	Sweeps between any two power levels at a single CW frequency						
		Resolution	$0.01 \mathrm{~dB} /$ step						
		Accuracy	Same as CW power accuracy						
		Step size	User-controlled, 0.01 dB to the full power range of the instrument						
		Step dwell time	Variable from 1 ms to 99 seconds. If the sweep crosses a step attenuator setting, there will be a sweep dwell of approximately 20 ms to allow setting of the step attenuator.						
	Sweep frequency/step power		A power level step occurs after each frequency sweep. Power level remains constant for length of time required to complete each sweep.						
	Amplitude modulation	External AM input	Log AM or linear AM input, front or rear-panel BNC, 50Ω or 600Ω input impedance All options selectable from modulation menu						
		AM sensitivity	Log AM: Continuously variable from 0 to $25 \mathrm{~dB} / \mathrm{V}$ Linear AM: Continuously variable from 0 to 100\%/V						
		AM depth	0 to 90% linear, 20 dB log (typical with RF level at 6 dB below maximum rated output)						
		AM bandwidth (3 dB)	DC to 50 kHz minimum (DC to 100 kHz typical)						
		Maximum input	$\pm 1 \mathrm{~V}$						
	Frequency modulation	External FM input	Front or rear panel BNC, 50Ω or 600Ω input impedance. All options selectable from modulation menu						
		FM sensitivity	Variable from $\pm 10 \mathrm{kHz} / \mathrm{V}$ to $\pm 20 \mathrm{MHz} / \mathrm{V}$ (narrow FM modes) or from $\pm 100 \mathrm{kHz} / \mathrm{V}$ to $\pm 100 \mathrm{MHz} / \mathrm{V}$ (wide FM mode) ${ }^{* 3}$						
		Deviation	Narrow mode: $\pm 10 \mathrm{MHz}$, DC to 500 kHz rates Wide mode: $\pm 100 \mathrm{MHz}$, DC to 100 Hz rates Locked mode: The lesser of $\pm 10 \mathrm{MHz}$ or rate $\times 300,1$ to 500 kHz rates						
	Square wave modulation*4	On/off ratio	$>50 \mathrm{~dB}$						
		Rise/fall time	<1 μ s typical						
		Internal square wave generator	Four square wave signals ($400 \mathrm{~Hz}, 1 \mathrm{kHz}, 7.8125 \mathrm{kHz}$, and 27.8 kHz), selectable from modulation menu Accuracy: Same as internal or external 10 MHz time base Square wave symmetry: $50 \% \pm 5 \%$ at all power levels						
		External input	Front or rear-panel BNC, selectable from modulation menu Drive level: TTL compatible input Minimum pulse width: $>5 \mu \mathrm{~s}$ Input logic: Positive-true or negative-true BNC, selectable from modulation menu						
	Amplitude modulation*5	External AM input	Log AM or linear AM input, front or rear-panel BNC, 50Ω or 600Ω input impedance All options selectable from modulation menu						
		AM sensitivity	Log AM: Continuously variable from 0 to 25 dB per volt Linear AM: Continuously variable from 0 to 100\% per volt						
		AM depth (typical)	0 to 90\% linear; 20 dB log						
		AM bandwidth	DC to 50 kHz minimum (DC to 100 kHz typical)						
		Flatness	$\pm 0.3 \mathrm{~dB}$ (DC to 10 kHz rates)						
		Accuracy	$\pm 5 \%$						
		Distortion	<5\% typical						
		Incidental phase modulation	<0.2 radians (30% depth, 10 kHz rate)						
		Maximum input	$\pm 1 \mathrm{~V}$						

*1: All specifications apply to the phase-locked CW and step sweep modes at the lesser of +10 dBm output or maximum specified levelled output power, unless otherwise noted
*2: $>40 \mathrm{GHz}$ units and units with Option 15 at maximum specified levelled output power
*3: For $6 \times 1 \times 5$ units, maximum sensitivity is divided by 2 from 1 to 2.2 GHz and is divided by 4 from 500 MHz to 1 GHz .
*4: The RF output can be pulse modulated via an external modulating signal or an internal square wave generator
*5: All amplitude modulation specifications apply at 50% depth, 1 kHz rate, with RF level set 6 dB below maximum specified levelled output power, unless oth-er-wise noted
*6: All pulse modulation specifications apply at maximum specified levelled output power, unless otherwise noted
*7: Maximum attenuation = attenuation $\pm f$ fatness
*8: All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via the GPIB (IEEE-488 interface bus).

Ordering Information

Please specify model/order number, name, and quantity when ordering.

Model/Order No.	Name
	Main frame
69037A	Ultra Low Noise Synthesized CW Generator (2 to 20 GHz)*1
69045A	Ultra Low Noise Synthesized CW Generator (500 MHz to 20 GHz)*1
69047A	Ultra Low Noise Synthesized CW Generator (10 MHz to 20 GHz)*1
69053A	Ultra Low Noise Synthesized CW Generator (2 to 26.5 GHz)*1
69059A	Ultra Low Noise Synthesized CW Generator (10 MHz to 26.5 GHz) ${ }^{* 1}$
69063A	Ultra Low Noise Synthesized CW Generator (2 to 40 GHz$)^{* 1}$
69069A	Ultra Low Noise Synthesized CW Generator (10 MHz to 40 GHz$)^{* 1}$
69077A	Ultra Low Noise Synthesized CW Generator (10 MHz to 50 GHz)*2
69087A	Ultra Low Noise Synthesized CW Generator (10 MHz to 60 GHz)*2
69097A	Ultra Low Noise Synthesized CW Generator (10 MHz to 65 GHz)*2
69137A	Ultra Low Noise Synthesized Sweep Generator (2 to 20 GHz)*1
69145A	Ultra Low Noise Synthesized Sweep Generator $(500 \mathrm{MHz} \text { to } 20 \mathrm{GHz})^{* 1}$
69147A	Ultra Low Noise Synthesized Sweep Generator (10 MHz to 20 GHz)*
69153A	Ultra Low Noise Synthesized Sweep Generator (2 to 26.5 GHz)*1
69159A	Ultra Low Noise Synthesized Sweep Generator $\left(10 \mathrm{MHz}\right.$ to 26.5 GHz) ${ }^{\star 1}$
69163A	Ultra Low Noise Synthesized Sweep Generator (2 to 40 GHz) ${ }^{\text {*1 }}$
69169A	Ultra Low Noise Synthesized Sweep Generator $(10 \mathrm{MHz} \text { to } 40 \mathrm{GHz})^{* 1}$
69177A	Ultra Low Noise Synthesized Sweep Generator (10 MHz to 50 GHz) ${ }^{* 2}$
69187A	Ultra Low Noise Synthesized Sweep Generator (10 MHz to 60 GHz) ${ }^{* 2}$
69197A	Ultra Low Noise Synthesized Sweep Generator $(10 \mathrm{MHz} \text { to } 65 \mathrm{GHz})^{* 2}$
69237A	Ultra Low Noise Synthesized Signal Generator (2 to 20 GHz)*1
69245A	Ultra Low Noise Synthesized Signal Generator $(500 \mathrm{MHz}$ to 20 GHz)*1
69247A	Ultra Low Noise Synthesized Signal Generator (10 MHz to 20 GHz) ${ }^{\star 1}$
69253A	Ultra Low Noise Synthesized Signal Generator (2 to 26.5 GHz)*1
69259A	Ultra Low Noise Synthesized Signal Generator (10 MHz to 26.5 GHz) ${ }^{* 1}$
69263A	Ultra Low Noise Synthesized Signal Generator (2 to 40 GHz)*1
69269A	Ultra Low Noise Synthesized Signal Generator $(10 \mathrm{MHz} \text { to } 40 \mathrm{GHz})^{* 1}$
69277A	Ultra Low Noise Synthesized Signal Generator $(10 \mathrm{MHz}$ to 50 GHz)*2
69287A	Ultra Low Noise Synthesized Signal Generator $(10 \mathrm{MHz}$ to 60 GHz)*2
69297A	Ultra Low Noise Synthesized Signal Generator $(10 \mathrm{MHz} \text { to } 65 \mathrm{GHz})^{* 2}$
69337A	Ultra Low Noise Synthesized Sweep/Signal Generator (2 to 20 GHz)*
69345A	Ultra Low Noise Synthesized Sweep/Signal Generator $(500 \mathrm{MHz} \text { to } 20 \mathrm{GHz})^{\star 1}$
69347A	Ultra Low Noise Synthesized Sweep/Signal Generator $(10 \mathrm{MHz} \text { to } 20 \mathrm{GHz})^{* 1}$
69353A	Ultra Low Noise Synthesized Sweep/Signal Generator (2 to 26.5 GHz)* ${ }^{1}$
69359A	Ultra Low Noise Synthesized Sweep/Signal Generator (10 MHz to 26.5 GHz) ${ }^{\star 1}$
69363A	Ultra Low Noise Synthesized Sweep/Signal Generator $(2$ to 40 GHz)*
69369A	Ultra Low Noise Synthesized Sweep/Signal Generator (10 MHz to 40 GHz)*1
69377A	Ultra Low Noise Synthesized Sweep/Signal Generator (10 MHz to 50 GHz) *2
69387A	Ultra Low Noise Synthesized Sweep/Signal Generator $(10 \mathrm{MHz}$ to 60 GHz)*2
69397A	Ultra Low Noise Synthesized Sweep/Signal Generator $(10 \mathrm{MHz} \text { to } 65 \mathrm{GHz})^{\star 2}$

Model/Order No.	Name
68037B	Synthesized CW Generator (2 to 20 GHz)*
68045B	Synthesized CW Generator (500 MHz to 20 GHz$)^{* 1}$
68047B	Synthesized CW Generator (10 MHz to 20 GHz) ${ }^{* 1}$
68053B	Synthesized CW Generator (2 to 26.5 GHz)*1
68059B	Synthesized CW Generator (10 MHz to 26.5 GHz)*1
68063B	Synthesized CW Generator (2 to 40 GHz)*1
68069B	Synthesized CW Generator (10 MHz to 40 GHz) ${ }^{\text {* }}$
68077B	Synthesized CW Generator (10 MHz to 50 GHz) ${ }^{\text {2 }}$
68087B	Synthesized CW Generator (10 MHz to 60 GHz) ${ }^{\text {2 }}$
68097B	Synthesized CW Generator (10 MHz to 65 GHz) ${ }^{\text {*2 }}$
68137B	Synthesized Sweep Generator (2 to 20 GHz)*1
68145B	Synthesized Sweep Generator (500 MHz to 20 GHz)*1
68147B	Synthesized Sweep Generator (10 MHz to 20 GHz)*
68153B	Synthesized Sweep Generator (2 to 26.5 GHz)*1
68159B	Synthesized Sweep Generator (10 MHz to 26.5 GHz)*1
68163B	Synthesized Sweep Generator (2 to 40 GHz)*1
68169B	Synthesized Sweep Generator (10 MHz to 40 GHz) ${ }^{* 1}$
68177B	Synthesized Sweep Generator (10 MHz to 50 GHz) ${ }^{\text {2 }}$
68187B	Synthesized Sweep Generator (10 MHz to 60 GHz) ${ }^{\text {² }}$
68197B	Synthesized Sweep Generator (10 MHz to 65 GHz)
68237B	Synthesized Signal Generator (2 to 20 GHz)*1
68245B	Synthesized Signal Generator (500 MHz to 20 GHz)*
68247B	Synthesized Signal Generator (10 MHz to 20 GHz$)^{* 1}$
68253B	Synthesized Signal Generator (2 to 26.5 GHz) ${ }^{\text {*1 }}$
68259B	Synthesized Signal Generator (10 MHz to 26.5 GHz)*1
68263B	Synthesized Signal Generator (2 to 40 GHz)*1
68269B	Synthesized Signal Generator (10 MHz to 40 GHz$)^{* 1}$
68277B	Synthesized Signal Generator (10 MHz to 50 GHz$)^{* 2}$
68287B	Synthesized Signal Generator (10 MHz to 60 GHz *2
68297B	Synthesized Signal Generator (10 MHz to 65 GHz$)^{* 2}$
68337B	Synthesized Sweep/Signal Generator (2 to 20 GHz)*1
68345B	Synthesized Sweep/Signal Generator (500 MHz to 20 GHz$)^{* 1}$
68347B	Synthesized Sweep/Signal Generator (10 MHz to 20 GHz)*1
68353B	Synthesized Sweep/Signal Generator (2 to 26.5 GHz)*1
68359B	Synthesized Sweep/Signal Generator (10 MHz to 26.5 GHz)*1
68363B	Synthesized Sweep/Signal Generator (2 to 40 GHz)*1
68369B	Synthesized Sweep/Signal Generator (10 MHz to 40 GHz)*1
68377B	Synthesized Sweep/Signal Generator (10 MHz to 50 GHz)*2
68387B	Synthesized Sweep/Signal Generator (10 MHz to 60 GHz) ${ }^{\text {2 }}$
68397B	Synthesized Sweep/Signal Generator (10 MHz to 65 GHz)*2

Continued on next page

Model/Order No.	Name
	Options
Option 1	Rack mounting kit, includes one set of track slides (90° tilt capability), mounting ears, and front panel handles for mounting in a standard 19-inch equipment rack
Option 2A	Step attenuator ($10 \mathrm{~dB} /$ step, high-end frequency of ≤ 26.5 GHz , rated output power is reduced)
Option 2B	Step attenuator ($10 \mathrm{~dB} /$ step, high-end frequency of $\leq 40 \mathrm{GHz}$, rated output power is reduced)
Option 2C	Step attenuator ($10 \mathrm{~dB} /$ step, high-end frequency of $\leq 50 \mathrm{GHz}$, rated output power is reduced)
Option 2D	Step attenuator ($10 \mathrm{~dB} /$ step, high-end frequency of $\leq 60 \mathrm{GHz}$, rated output power is reduced)
Option 6	Phase modulation capability FM input and FM generator become FM/øM input and FM/øM generator (69200A, 68200B, 69300A and 68300B series) Not available with option 7
Option 7	Generators deletes the internal AM and FM generators (69200A, 68200B, 69300A and 68300B series). External AM and FM capability remains unchanged. Not available in combination with Option 6, 8, 10 or 20
Option 8	Internal power meter adds an internal power (69200A, 68200B, 69300A and 68300B series) compatible with 560-7, 5400-7, or 6400-71 series detectors. Not available with Option 7
Option 9	Rear panel RF output (moves RF output connector to the rear panel)
Option 10	Complex modulation (user defined modulation includes serial cable and Windows ${ }^{\circledR}$ based software) (69200A, 68200B, 69300A and 68300B series) (*Not available with Option 7)
Option 11	0.1 Hz frequency resolution (provides frequency resolution of 0.1 Hz)
Option 14	Wiltron 360B VNA compatibility (modifies rack mounting hardware to mate unit in Wiltron 360B VNA console)
Option 15	High power output (provides high-power from 2 to 26.5 GHz)
Option 16	High stability time base (adds an ovenized, 10 MHz crystal oscillator as a high-stability time base)
Option 17	Delete front panel (deletes the front panel for use in remote control applications where a front panel display and keyboard control are not needed)
Option 18	MM-wave bias (rear panel bias output to drive 54000-XX WRXX multiplier. BNC twinax: not available with Option 20)
Option 19	SCPI programmability adds GPIB command mnemonics complying with Standard Commands for Programmable Instruments (SCPI), Version 1993.0. SCPI programming complies with IEEE 488.2-1987
Option 20	SCAN modulator (adds an internal SCAN modulator for simulating high-depth amplitude modulated signals in models 68237B, 68337B, 68247B and 68347B only. Requires an external modulating signal input: not available in combination with Option 7 or Option 18)

Model/Order No.	Name
34RKNF50	Accessories Ruggedized K-to-Type N Female Adapter (DC to 20 GHz) 34VKF50
V Male-to-K Female (DC to 46 GHz)	
34RVNF50	Ruggedized V-to-Type N Female Adapter (DC to 20 GHz)
ND36329	MASTER/SLAVE interface cable
$761-69$	Protective front panel cover
$760-177$	Transit case
2300-16	69100A/68100B/68100A instrument driver for national instruments LabWindows $®$ Ver. 2.2
$2300-19$	69200A/68200B/68300B instrument driver for national Instruments LabWindows $®$ Ver. 2.2
$2300-20$	69000A/68000B instrument driver for national instruments LabWindows ${ }^{\circledR}$ Ver. 2.2

*1: K female output connector
*2: V female output connector

